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Abstract: Outstanding progress has been achieved in developing therapeutic options for reasonably
alleviating symptoms and prolonging the lifespan of patients suffering from myocardial infarction
(MI). Current treatments, however, only partially address the functional recovery of post-infarcted
myocardium, which is in fact the major goal for effective primary care. In this context, we largely
investigated novel cell and TE tissue engineering therapeutic approaches for cardiac repair, particu-
larly using multipotent mesenchymal stromal cells (MSC) and natural extracellular matrices, from
pre-clinical studies to clinical application. A further step in this field is offered by MSC-derived
extracellular vesicles (EV), which are naturally released nanosized lipid bilayer-delimited particles
with a key role in cell-to-cell communication. Herein, in this review, we further describe and discuss
the rationale, outcomes and challenges of our evidence-based therapy approaches using Wharton’s
jelly MSC and derived EV in post-MI management.

Keywords: biomanufacturing; cardiac tissue engineering; clinical translation; extracellular vesicles;
mesenchymal stromal cells; myocardial infarction; Wharton’s jelly

1. Background

Cardiovascular diseases remain the most common cause of mortality worldwide [1].
A long list of risks including sedentary lifestyle and obesity among other key factors are
known to potentially harm de cardiovascular system [2]. Myocardial infarction (MI), caused
by a lack of oxygen delivery to the myocardial tissue, is the most common cardiovascular
disease which results in irreversible damage to the heart muscle that may impair cardiac
function and lead to heart failure. Ultimately, heart transplantation is the last option to
improve survival in end-stage heart failure although is hampered by the low number
of organ donors and adverse allograft rejection [3]. Other limitations to reach complete
heart function recovery include possible side effects of immune-suppressive drugs on
other recipient’s organs and the need for extremely complex coordinated procedures in
expensive healthcare facilities [4,5].
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Over the past few decades, this clinical scenario was spurred by initiatives addressing
the design, development and assessment of a number of cell-based therapies to increase
cardiac function recovery following MI [6]. In this context, the first efforts using mixed or
enriched bone marrow mononuclear cell populations were extremely inefficient due to low
cell retention, survival, and differentiation rates once administered. Further experiences
were focused on intracoronary or intramyocardial delivery of mesenchymal stromal cells
(MSC), also from bone marrow, subcutaneous adipose tissue or umbilical cord. Unfortu-
nately, in general, treatment outcomes after conventional cell therapy in humans have been
modest so far, because of the difficulties involved in repairing usually large myocardial
scars and the low efficacy of administered cells [7]. Alternatively, cardiac tissue engineering
(TE) emerged as a new therapeutic modality combining reparative cells with supporting
materials (either natural or synthetic) in a three-dimensional (3D) context, although their
clinical application is still very limited [8]. In present times, another strategy involving
the use of extracellular vesicles (EV), which are double-layered membrane nanovesicles
secreted by most cells to their microenvironment, has gained interest. In particular, EV
secreted from multipotent mesenchymal stromal cells (MSC) are considered a valuable
alternative to MSC themselves because they are potentially more efficient in transferring
specific molecular cargoes and associated functions to targeted cells or tissues without
the difficult logistics and safety risks associated with cell therapy. Thus, MSC-secreted EV
(MSC-EV) may be useful immune-modulatory, cardioprotective and angiogenic agents
post-MI, as shown in vitro and in experimental animal models [9,10].

Herein, we review the scientific bases, current therapy toolkit and associated outcomes
as well as the future challenges for the development of novel treatments using MSC-EV.

2. Foundations of an Advanced Post-Myocardial Infarction Therapy
2.1. Wharton’s Jelly Mesenchymal Stromal Cells: The Active Ingredient

Multipotent MSC are self-renewing, ex vivo culture-expandable stem cell populations
that can be commonly collected from the stroma of almost all tissues and organs [11,12].
In regard to its origin, MSC arise most likely from the perivascular space [12]. According
to the following minimal criteria established by the International Society for Cell and
Gene Therapy (ISCT), MSC must show: (i) plastic-adherence under standard in vitro
culture conditions; (ii) specific surface expression pattern including the presence of CD105,
CD73 and CD90, and absence of CD45, CD14, CD79α and HLA-DR; and (iii) in vitro
ability to differentiate into mesodermal cell lineages (i.e., osteogenic, adipogenic and
chondrogenic) [13]. In addition to their multipotent differentiation capacity, MSC also
exhibit marked immune modulation potential and, thus, they are considered immune-
privileged [14–17].

Remarkably, the therapeutic potential of MSC lies in their capacity to secrete a myriad
of paracrine factors into the microenvironment [18]. Mediators released by MSC are known
to actively modulate diverse biological processes, including: (i) tissue regeneration and
repair; (ii) progenitor cell differentiation; and (iii) immune/inflammatory responses [19].
In vivo, MSC are able to specifically migrate to damaged tissues, where they interact locally
and regulate host reparative progenitors and/or immune cells (both from innate and
adaptive immune systems) [20,21]. In this sense, MSC may induce functional changes of
monocytes/macrophages, dendritic cells, T cells, B cells, and natural killer cells to regulate
the overall immune system response [22]. This is, for instance, the case of MSC derived from
the umbilical cord and the adipose tissue surrounding the human heart that equally inhibit
the inflammatory response of stimulated T cells [10,23]. Despite the complexity of molecular
pathways and immune cell types involved in immunologic disorders, the use of MSC for
the treatment of patients with Graft versus Host Disease (GvHD) illustrates unequivocally
their therapeutic potential, which can be further improved by generating pools of cells
from different donors to ensure patient’s response [24–26]. Thus, therapies based on
MSC and derivatives will be developed along with increasing progress in understanding
their intrinsic mechanisms of action (MoA), and may also benefit from recent trends
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towards the generation of regulatory-approved, clinical-grade cell banks with homozygous
human leukocyte antigen (HLA) haplotypes of high prevalence among populations at a
global scale [27]. This strategy holds the potential to offer optimized, versatile, immune-
compatible therapeutic cell products for allogeneic transplantation.

Researchers already have the ability to readily isolate and scale-up large numbers of
clinical-grade MSC from most tissue sources [11,16]. In particular, Wharton’s jelly (WJ),
which is a gelatinous substance of connective tissue found in the umbilical cord donated
after birth, is a plentiful source of MSC [28,29]. Historically, WJ was first described by
Thomas Wharton back in 1656 [30], whereas McElreavey and collaborators reported the
isolation of MSC,WJ in 1991 [31] (Figure 1). In terms of baseline characteristics, MSC,WJ
are quite primitive cells with low risk to carry somatic mutations, thus are considered
highly immune-privileged in comparison with other potential tissue sources. Moreover,
clinical application of MSC is not restricted by either invasive, painful isolation procedures
or intrinsic donor comorbidities (i.e., cardiovascular risk factors). MSC,WJ also exhibit
high proliferation rates ex vivo, therefore allowing well-established, valuable, clinical-
grade Master Cell and Working Cell Banks [16]. Notably, MSC,WJ express negligible
levels of HLA-DR and low or null expression of the co-stimulatory molecules CD40,
CD80 and CD86 [28,29]. Regarding HLA expression, we and others have previously
demonstrated that HLA-DR expression is highly variable in primary MSC cultures, but it is
almost undetectable in the case of MSC,WJ [28,32–34]. Additionally, their high secretion of
inhibitory molecules such as PGE2 and the expression HLA-G6 isoform support the above-
mentioned immune-privileged status by MSC,WJ [14]. Altogether, these data support
the low probability of rejection and low toxicity of MSC,WJ once administered [35]. In
this sense, in our laboratory, we confirmed that MSC,WJ are clinically useful and safe in
the context of inflammatory conditions, including chronic spinal cord injury (EudraCT
No. 2015-005786-23; ClinicalTrials.gov (accessed on 30 June 2021) Id. NCT03003364) and
severe respiratory distress due to SARS-CoV-2 infection (EudraCT No. 2020-001505-22;
ClinicalTrials.gov (accessed on 30 June 2021) Id. NCT04390139) [36,37].
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2.2. Cardiac Extracellular Matrices: The Supportive Vehicles

Cardiac TE offers a plausible solution to overcome therapeutic limitations observed
when reparative cells are delivered into the hypoxic infarcted area by either intracoronary
administration or direct myocardial injection, thus increasing their cellular implantation
and survival rates [38]. Furthermore, the use of supportive vehicles allows the incorpo-
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ration of cells and/or bioactive factors for prolonged local retention and facilitates their
biological activity or MoA. In brief, a variety of natural and synthetic materials have been
used as cell supportive platforms generating engineered bioimplants or grafts that can be
securely implanted over the post-infarcted heart [39]. Nevertheless, natural materials show
enhanced biodegradable and biocompatible properties and can better recreate the native
myocardium environment [40,41]. Particularly, the decellularized cardiac extracellular
matrix (ECM) provides a close match to the native, physiological microenvironment with
minor changes in stiffness while preserving the composition, vasculature network and 3D
framework [42], while also enabling electromechanical coupling with the host myocardium
after implantation [43,44]. For that, porosity and pore size are critical parameters for the
functionality of decellularized scaffolds and determine their optimal mechanical properties,
among other paramount factors [45]. Hence, the presence of open porous and intercon-
nected networks is crucial to guarantee optimal cell nutrition, proliferation and migration
for successful tissue repair and regeneration [45].

In our laboratory, a refined protocol for the manufacture of porous decellularized
cardiac ECM from the human pericardium and porcine myocardium loaded with car-
diac adipose tissue-derived MSC (MSC,CAT) was reported [46,47]. According to our
observations, both decellularized porous scaffolds: (i) were optimal for accommodating
host-derived cells; (ii) provided the necessary signalling cues to modulate cell function; and
(iii) highly supported cell differentiation and survival [46,47]. However, proteome charac-
terization of the two decellularized matrices showed enrichment of matrisome proteins and
major cardiac ECM proteins, considerably higher for the recellularized pericardial graft.
Moreover, although macro and micromechanics were well-maintained in both cardiac ECM
following decellularization, the decellularized pericardial scaffold demonstrated improved
cell infiltration and retention as well as larger pore size, making it the preferred scaffold
for the biofabrication of solid organs or bioimplants [48,49]. Interestingly, decellularized
ECM can be subjected to lyophilisation or sterilization procedures without significant
mechanical changes, thus allowing their storage until use as off-the-shelf products for
clinical use [49,50].

2.3. Evidence-Based Pre-Clinical Outcomes

In our laboratory, we collected robust in vivo data regarding the use of our two
previously-described decellularized ECM in post-infarcted swine models. First, the ne-
oformation of growing blood vessels and sprouting nerves in cardiac ECM made of de-
cellularized pericardium once implanted in post-infarcted pigs suggested that: (i) both
vascularization and innervation processes were supported by the ECM structure itself;
(ii) were hypoxia-dependent; and (iii) required mobilization of host undifferentiated pro-
genitor cells [49,50]. Second, implantation of cell-embedded cardiac bioimplants limited
the sequelae associated with MI, particularly reducing infarct size and improving cardiac
function. In these experiments, we specifically repopulated the decellularized human peri-
cardial ECM by combining porcine MSC,CAT with the self-assembling peptide RAD16-I
to generate optimal 3D conditions that efficiently promoted proliferation, maintained the
differentiation commitment of MSC,CAT toward the endothelial lineage, and increased
their migration from bioimplant to underlying injured myocardium [46]. Cardiac func-
tion was further assessed non-invasively by magnetic resonance imaging (MRI) and scar
healing was evaluated by using a customized-design electrical impedance spectroscopy
monitoring system incorporated within the bioimplant [51]. As a result, MRI detected
a significant improvement in left ventricular ejection fraction (LVEF) and stroke volume
in bioimplant-treated animals while morphometric measurements revealed a significant
reduction in infarct size one month after implantation. Interestingly, we confirmed that
noninvasive electrical impedance spectroscopy was useful for tracking differential scar
healing, showing differences in impedance parameters between treated and control pigs.
Indeed, myocardial tissue was preserved in bioimplant-treated animals, which was con-
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firmed by histopathological measurements of reduced inflammation and altered collagen
deposit [51].

Alternatively, administration of a similar ECM-based cardiac bioimplant combining
decellularized porcine myocardial ECM refilled with porcine MSC,CAT also supported
cardiac recovery in post-infarcted pigs. Our results reflected a higher improvement in
LVEF after MI in the porcine myocardial ECM bioimplant-treated animals compared to
those carrying the same cell-free scaffold [44] or other types of natural scaffolds [52,53].
Furthermore, engrafted bioimplant promoted revascularization of injured tissue, reduced
infarct size, and attenuated ventricular remodeling and fibrosis progression [54].

A concluding comparison of functional benefits associated with the two decellularized
ECM-based bioimplants was additionally reported by our group, as described in [49].
Additionally, decellularized scaffolds were either repopulated with porcine MSC,CAT or
tested as cell-free scaffolds. Irrespective of the ECM origin or cell recolonization, both TE
constructs were found well-integrated with the underlying myocardium and showed signs
of neovascularization and nerve sprouting forty days after implantation. The combination
of decellularized ECM scaffolds with MSC showed higher improvement than the cell-free
scaffolds, indicating a synergistic effect of all bioimplant components in the therapeutic
benefit of TE products [55]. Indeed, TE scaffolding may be beneficial for triggering MI
recovery by providing a favorable microenvironment for the recruitment of endogenous
progenitor cells towards the infarct bed by embedded MSC. The contribution of MSC to
MI recovery has been previously reported [56], and paracrine signaling has been broadly
described as one of the putative mechanisms by which implanted MSC can exert beneficial
effects over the infarcted area [57,58].

Collectively, the presented evidence-based pre-clinical experience using MSC and
cardiac ECM supports the achievement of beneficial effects on cardiac function follow-
ing MI [59–63]. This was shown to be crucial for the regulatory approval of a novel
advanced therapeutic medicinal product (ATMP) termed PeriCord by the Spanish Agency
of Medicines and Medical Devices (AEMPS) (PEI18-140). PeriCord, which is composed of
regulatory-approved MSC,WJ (PEI16-017) within decellularized pericardial ECM, poten-
tially emerges as a new generation of TE-based treatment for MI. For that, its safety and
efficacy are being evaluated in the clinical setting (Table 1) [64].

Table 1. Current clinical trials with using MSC,WJ or EV in the treatment of cardiovascular diseases. * Reported results
in [65].

Clinical Trial Identifier Abstract N Drug Phase State

Pericardial Matrix
With Mesenchymal
Stem Cells for the

Treatment of Patients
With Infarcted

Myocardial Tissue
(PERISCOPE) [50]

NCT03798353

Comparison of the
outcome of patients

who have undergone
sternotomy to

perform surgical
revascularization and

patients that,
additionally, were

implanted the
PeriCord construct

Estimated: 12

Matrix-cell
construct placed
in the ischemic
area (PeriCord)

1 Recruiting

Intracoronary
Human Wharton’s

jelly-derived
Mesenchymal Stem

Cells (MSC,WJ)
Transfer in Patients

With Acute
Myocardial

Infarction (AMI)
(MSC,WJ-AMI) [65]

NCT01291329

Evaluation of safety
and efficacy of

MSC,WJ infusion in
patients 4–7 days

post-MI

116 MSC,WJ infusion
or placebo 2 Completed

*
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Table 1. Cont.

Clinical Trial Identifier Abstract N Drug Phase State

Randomized Study
of Coronary

Revascularization
Surgery With

Injection of MSC,WJ
and Placement of an

Epicardial
Extracellular Matrix

(scorem-cells)

NCT04011059

Evaluation of the
safety and effect of

intramyocardial
injection of MSC,WJ

in coronary
revascularization

Estimated: 40 MSC,WJ injection
or placebo 1–2 Not yet

recruiting

Intracoronary or
Intravenous Infusion

Human Wharton’s
jelly-derived

Mesenchymal
Stromal Cells in

Patients With
Ischemic

Cardiomyopathy
(WJ-ICMP Tria)

NCT02368587

Evaluation of the
safety and efficacy of
MSC,WJ in patients

suffering from
ischemic

cardiomyopathy
secondary to MI

Estimated: 160 MSC,WJ infusion
or placebo 2 Not yet

recruiting

Cardiovascular
Clinical Project to

Evaluate the
Regenerative
Capacity of

CardioCell in
Patients With Acute

Myocardial
Infarction (AMI)

NCT03404063

Stablish a
comparison of

outcomes between
patients suffering

from ischemic
damages treated with

CardioCell and a
control group (which

will be receiving
placebo)

105

Active IMP
(known as

CardioCell) and
placebo

2–3 Completed

WJMSCs
Anti-inflammatory

Therapy in Coronary
Artery Disease
(WANICHD)

NCT04551456

Evaluation of the
safety and

anti-inflammatory
efficacy of MSC,WJ

in patients with
coronary artery
atherosclerosis

disease

Estimated: 300 MSC,WJ infusion
or placebo 2 Not yet

recruiting

WJMSCs
Anti-inflammatory
Therapy in Acute

Myocardial
Infarction (WAIAMI)

NCT04551443

Evaluation of the
safety and feasibility

of WJMSCs in the
treatment of patients

in the acute phase
(within 24 h) with the
both of ST-Segment-

Elevation or
Non-ST-Segment-

Elevation
AMI.

Estimated: 200 MSC,WJ infusion
or placebo

Not yet
recruiting

Safety Evaluation of
Intracoronary

Infusion of
Extracellular Vesicles
in Patients With AMI

NCT04327635
Safety evaluation of

EVs in treating
patient with AMI

Estimated: 18
PEP drug (dosage

of 5%; 10%; or
20%)

1 Recruiting
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2.4. PeriCord: A Valuable CASE in Scalability and GMP Biomanufacturing of
Cardiac Bioimplants

As previously mentioned, we explored the therapeutic potential of engineered cardiac
bioimplants comprising cell-free cardiac scaffolds with preserved ECM structure and
components aiming to deliver therapeutic MSC post-MI [66]. Remarkably, one of our
two pre-clinically developed TE approaches has been scaled up to produce a clinical-size,
good manufacturing practice (GMP)-compliant allogeneic ATMP. In specific, this novel
ATMP is referred to as PeriCord and consists of ~16 cm2 cardiac bioimplant comprising
clinical-grade MSC,WJ (the active ingredient) within human decellularized pericardial
ECM (acting as a cell supportive material to facilitate surgical implantation). The acceptance
criteria for initial PeriCord batch certification comprises: (i) a dose range of 7–15 × 106

total viable MSC,WJ; (ii) cell viability ≥70%; and (iii) endotoxin ≤4 units/mL [50]. Safety
data from PeriCord implantation are being evaluated in the ongoing phase I PERISCOPE
(the PERIcardial matrix with mesenchymal Stem Cells fOr the treatment of PatiEnts with
infarcted myocardial tissue) clinical trial (EudraCT No. 2018-001964-49; ClinicalTrials.gov
(accessed on 30 June 2021) Id. NCT03798353) (Table 1). Importantly, eleven patients have
already been recruite and no adverse effects directly related to the treatment have been
observed to date.

In light of this clinical translation experience, we are currently taking further advantage
of the window of opportunity that MSC-EV, instead of the MSC themselves, opens in terms
of their plentiful cargo of molecules and associated functions, conserved morphology
and integrity, and capacity of reaching either neighboring or distant cells and tissues
upon administration. In particular, the rationale for the use of MSC-EV arises from the
growing amount of data suggesting that these preparations are harmless and trigger, at
least, similar effects to their parent cells. Moreover, MSC-EV are theoretically unaltered by
microenvironmental factors due to their double-leaflet lipid membranes efficiently protect
the inner molecular cargo from degradation and guarantee their entry into targeted cells.
Additionally, their characteristic nanosize counteracts the potential risk of pulmonary
thrombosis after intravascular administration of MSC due to the majority of infused cells
are initially trapped in the lungs of recipients [67].

3. Mesenchymal Stromal Cell-Secreted Extracellular Vesicles: The Envisioned
Alternative

In 1983, Stahl and collaborators reported that transferrin receptors were associated
with small membranous vesicles that were actively expelled into the extracellular microen-
vironment by reticulocytes. This was one of the first descriptions of secreted cell-to-cell
communication agents, which were later referred to as EV [68,69]. Notably, after nearly
three decades of tremendous effort, EV are recognized as a wide diversity of lipid bilayer-
delimited particles that are released by most cell types, including MSC. Succinctly, EV
are distinctive in size, biogenesis, cargo molecules and function, and their classification
is a major concern that remains controversial [70]. At present, EV are commonly divided
into three categories according to size and formation pathway diversity as follows: (1)
exosomes, which are intraluminal vesicular structures with a diameter ranging between 30
and 150 nm that are raised by the internal budding of the endosomal membrane during
maturation of inner cellular multivesicular bodies (indeed, exosomes are increasingly des-
ignated “small EV”); (2) microvesicles that sprout directly from the plasma membrane and
are released into the extracellular space, and have a wider size assortment than exosomes
(50 nm–1 µm); and (3) apoptotic bodies, varying from 1 to 5 µm of diameter and externally
released after an apoptotic cell disassembly procedure [71–73]. In an attempt to promote the
standardization of EV characterisation, the International Society for Extracellular Vesicles
(ISEV) proposed a set of “Minimal Information for Studies of Extracellular Vesicles” (or
MISEV) guidelines for the field in 2014 and were recently updated in 2018 [73,74]. Indeed a
better understanding of the composition of EV preparations may help to discern the actual
biological activity of specific factors above the background.

ClinicalTrials.gov
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Regarding their composition, EV contain a wide variety of bioactive compounds such
as RNA species (mainly miRNA), lipids, and cytosolic proteins and transmembrane pro-
teins in an appropriate and functional formulation, resembling the content of the parental
cells. This has prompted the investigation of EV as useful blood-based biomarkers for
disease diagnosis and prognosis, pharmaceutic targets of diseases, and active ingredients in
the context of novel advanced cell-free therapies against cardiovascular conditions [10,75].
The content and functional attributes of EV depend on different conditions, including cell
viability status, stage of activation, infection, stress, and neoplastic transformation, among
others. For instance, the presence (or absence) of specific serum components clearly affects
EV biogenesis and characteristics as one of the wide range of molecular changes that cells
undergo in response to cellular stress [76]. In 2005, Savina and collaborators described EV
secretion as highly dependent on the calcium handling machinery of the parental cells [77].
In addition, exogenously-added substances such as silver nanoparticles into the culture
cell medium seem to promote EV formation and secretion [78]. However, exosomes can
be restricted in therapies preparation due to their difficulties incorporating the specific
cargo [79]. Collectively, these findings indicate that cells behave differently under stress
conditions and therefore this may have an impact on the potential traits of their secreted
EV, and point out the relevance of adjusting protocols for optimal cell culture conditions to
guarantee the therapeutic efficacy of the resulting EV preparations.

Of note, EV may also act as an efficacious toolkit of cell-to-cell communication due
to their ability to specifically modulate the molecular cargo and associated functions of
targeted neighboring or distant cells or tissues [80]. In this regard, the protection conferred
by these membranous nanovesicles to their internal effector molecules is crucial to warrant
their triggered functions and governing MoA over time.

At the functional level, compelling pre-clinical studies show that MSC-EV are potent
bioactive agents capable of modulating the host immune response, stimulating novel blood
vessel formation (angiogenesis), cardioprotection (i.e., myocardial tissue injury reduction)
and endothelial cell proliferation/migration, among other cardiovascular beneficial ef-
fects [81,82]. In brief, similar to the parental cells, EV have the potential to promote a shift
in the pro-inflammatory milieu and functional changes in recipient immune cells, including
monocytes/macrophages, dendritic cells, T cells, B cells and natural killer cells. In this
context, the effect of MSC-EV on allogeneic T-cell stimulation and cytokine production
in vitro has been found [83,84]. For instance, the addition of MSC-EV, such as those isolated
from MSC,WJ using size-exclusion chromatography, was capable of powerfully preventing
T-cell stimulation and reduced levels of adverse pro-inflammatory cytokine reaction [10].

In this context, MI and myocardial ischemia/reperfusion represent inflammation-
associated diseases in which the immune-modulatory properties of MSC-EV could be
of clinical relevance. Particularly, MI is accompanied by both exacerbated local and pe-
ripheral inflammatory responses, whereas myocardial ischemia/reperfusion triggers an
over-activated inflammatory cascade in diseased hearts. However, in both conditions, the
blockade of blood flow initiates an intense beneficial inflammatory effect that is essential
for the early clearance of dead cells and subsequent cardiac repair and regeneration but,
in turn, it becomes extremely deleterious if it is not timely suppressed. This leads to the
post-infarction replacement of myocardial tissue by a non-contractile scar [85]. In this
sense, MSC-EV seem to be valuable to modulate cardiac inflammation and improve overall
cardiac functional parameters in failing hearts through distinct MoA that are currently
under investigation. Numerous studies have shown that intramyocardial injection of
MSC-EV from distinct tissue sources efficiently reduced the infarct size and enhances
cardiac function preserving cardiac systolic and diastolic performance in ischemic ro-
dent models [86–89]. In specific, it has been convincingly demonstrated that the benefit
to macrophage polarization status is mediated by the miR-182 activity associated with
MSC,WJ-secreted EV (MSC,WJ-EV) after their delivery in vivo [90]. In this same study of
myocardial ischemia/reperfusion, intramyocardially injected MSC,WJ-EV also led to a
remarkable reduction in infarct size and considerably alleviated undesirable inflammatory
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traits in both the heart and serum of EV-treated animals. Furthermore, engineered MSC-EV
to overexpress miRNA-181a drastically influenced inflammatory response after myocardial
ischemia-reperfusion injury, as demonstrated by Wei and collaborators [91]. These authors
further confirmed that engineered MSC-EV led to a decrease in pro-inflammatory IL-6
and TNF-α levels, as well as an increase in anti-inflammatory cytokines such as IL-10 in
injured mice. In order to allow these benefits, the mechanisms involved are considered
multifactorial, since a joint action of antiapoptotic, anti-inflammatory and pro-survival
effects happens [92].

In addition, administration of MSC-EV has shown to exert both protective and pro-
regenerative effects against myocardial tissue damage provoked by acute MI, along with
no risk of tumorigenicity and immune rejection after infusion [93].In fact, MSC-EV-driven
cardio protection would include reduction in cardiomyocyte apoptosis and enhancement of
cardiomyocyte viability post-MI. For instance, conditioned medium collected from cultured
MSC and infused intravenously before reperfusion prompted a significant reduction in
infarct size both in post-infarcted rodents and pigs [94]. Specifically, they concluded that
benefit was reached by improved myocardial cell viability following in vivo treatment.
This is in agreement with data from Arslan and collaborators, who observed that the
administration of MSC-EV in mice resulted in increased ATP levels, decreased oxidative
stress, and also triggered protective PI3K/Akt-mediated signaling in ischemic/reperfused
hearts [95]. Furthermore MSC-EV delivery was capable of preventing cardiac muscle cells
from apoptosis, and this cardioprotection was directly linked to specific miRNAs present in
MSC-EV that specifically targeted the cell death regulation machinery [96,97]. Collectively,
these studies are of paramount importance because they suggest increased improvements
in myocardial tissue survival by MSC-EV and how this beneficial effect plays a key role in
preventing subsequent adverse remodeling once myocardial ischemia/reperfusion injury
is critically established.

In vivo administration of MSC-EV could promote active processes of myocardial
angiogenesis in ischemic hearts due to the high levels of proangiogenic factors that MSC-
EV transfer locally. Following MSC-EV administration, EV-associated biomolecules trigger
the proliferation and migration of endothelial-lineage progenitors or mature vascular cells.
Hence, infarcted hearts treated with MSC-EV exhibited higher capillary densities compared
to non-treated hearts within one month after myocardial/reperfusion injury [87,88,98,99].

Currently, over one hundred clinical studies using EV are registered in the database
www.clinicaltrials.gov (accessed on 17 August 2021). The majority of these studies evaluate
endogenous EV as blood biomarkers for diagnostics rather than therapy. Despite the
promising observations from the above-mentioned pre-clinical experience, the number of
experimental treatments based on MSC-EV reaching the clinical stage is still very scarce
in the context of MI to date. To the best of our knowledge, only one clinical trial, which
is devoted to the safety evaluation of intracoronary infusion of MSC-EV in patients with
acute MI (Table 1), has been posted so far, particularly by Mayo Clinic’s investigators on
31 March 2020, without any patients recruited so far.

Nevertheless, we apperceive that this is also the right time to advance the design,
development and clinical translation of cell-free ATMP based on biomanufactured MSC-EV
(Figure 2). For that purpose, it will be crucial to further: (i) comprehend their specific
MoA; (ii) establish optimal dosing and dosage; (iii) better evaluate their biodistribution
and potential adverse effects; and (iv) adhere to GMP quality management guidelines and
regulatory requirements.

www.clinicaltrials.gov
www.clinicaltrials.gov
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Figure 2. Current clinical translation of ATMP based on MSC and derived EV from Wharton’s jelly. For years, our
laboratories have actively collaborated in exploring innovative treatments for MI. Particularly, our pre-clinical evidence-
based experience includes the study and application of a variety of cell therapy and TE approaches using MSC derived from
cardiac adipose tissue (MSC,CAT) and Wharton’s jelly (MSC,WJ). Recently, a clinical-size allogeneic cardiac bioimplant
termed PeriCord has been implanted for limiting post-infarct sequelae in patients. As an alternative, the biomanufacturing
and therapeutic use of novel ATMP based in MSC-EV resembling the characteristics of the parental MSC could be potentially
adapted to the PeriCord production procedure. In fact, high yields of multifunctional EV with preserved function and
purity could be isolated from the same large volume cultures of MSC,WJ prior to the generation of the PeriCord bioimplant.
For that, however, progress in upcoming challenges, including good manufacturing practice and regulatory issues, will be
crucial to demonstrate that this approach also holds potential for clinical translation. MSC,CAT = Cardiac Adipose Tissue-
derived Mesenchymal Stromal Cells; MSC,WJ = Wharton’s jelly-derived Mesenchymal Stromal Cells; and EV = Extracellular
Vesicles; MI = Myocardial Infarction.

4. MSC-EV-Based Products: Clinical Perspectives and Biomanufacturing Challenges

Cell-based TE therapies have gained interest in the field of regenerative medicine as
promising approaches for the repair of post-infarcted myocardial tissue. This foundation is
based, in part, on the improvements to efficiently collect sample preparations enriched with
high amounts of paracrine multifunctional factors, including multifunctional nanovesi-
cles found in the conditioned medium from culture-expandable MSC. Notably, MSC-EV
can induce phenotypic and epigenetic changes in neighboring cells while traveling long
distances to transfer their specific molecular cargoes to targeted cells or tissues and mod-
ulate biological processes accordingly. For this, the scientific community envisions the
versatility and clinical potential of MSC-EV as innovative, cell-free, immunomodulatory,
pro-regenerative therapy approach post-MI. EV confer many advantages over the parental
MSC themselves, as they: (i) are non-replicative biological, and thus their administration
evades potential risks of tumorigenesis; and (ii) exhibit stable characteristics, including
shelf-life, permeability, biodistribution and toxicity, over time in either the autologous or
allogeneic setting indistinctly.

Regarding the translation of MSC-EV products into the clinics, MSC-EV biomanufac-
turing requires specialized facilities, skilled personnel and sufficient financial resources to
first produce high amounts of the parental cells and then purify their released EV consis-
tently, from batch to batch, in compliance with GMP procedures. EV isolation methods
are still complex and involve the use of equipment not designed for this purpose. This
most probably explains why treatments based on MSC-EV are poorly present in the clinical
scenario to date. Their clinical use relies on open/semi-open production systems which
are labor-intensive, require manual processing, and represent high investment in building
classified environments, equipment and training skilled staff. Current open/semi-open sys-
tems for MSC culturing are also potentially associated with considerable increasing costs,
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risk of contamination, great variability across batches, and lack of real-time in-process
control. For this, there has been a tendency toward the introduction of more sophisti-
cated automated platforms, including scalable bioreactor systems, which may simplify the
biomanufacturing workflow and optimize resources. These platforms could highly im-
pact on robustness, traceability and yields of clinical-grade MSC expansion, also reducing
production costs and allowing a number of in-process controls providing more accurate
predictions of compliance with final product specifications.

Moreover, to achieve successful translation of MSC-EV into useful therapy candidates,
MSC-EV processing has to resolve major concerns from a biomanufacturing perspective,
including standardized in-process quality controls, identification of bioactive components
in the cargo of EVs and potency testing, as well as further progress in instrumentation
for optimal EV quantification and dosage. In this regard, EV yields remain limiting
due to conventional MSC culture or microenvironment conditions, including cell density,
aging and passage, stage of differentiation and substrate topography, which considerably
affect their intrinsic properties. In this sense, the use of bioreactors with high cell growth
surface, media recirculation and repeated supernatant recovery appears highly valuable to
fulfil current clinical standards or requirements. On the contrary, animal-derived growth
supplements are discouraging for clinical-grade MSC and derivatives biomanufacturing
because they can potentially induce adverse clinical effects once therapeutic products are
administered. Most of these supplements have undergone limited characterization, and
they might harbor potential animal pathogens that remain critically unknown. Alternative
chemically-defined MSC culture media formulations need also to be immediately addressed
in forthcoming MSC-EV applications.
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