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Abstract. – Cardiovascular diseases are ma-
jor causes of people death associated with high 
mortality and disability. Exosomes are nano-
sized extracellular vesicles containing protein, 
lipid, transcription factors, mRNAs, non-coding 
RNA (ncRNA) and nucleic acid contents, which 
are critical players of intercellular communica-
tion via long-range signals or cell-to-cell contact. 
The emergence of exosomes provides favorable 
strategies for the diagnosis and treatment of 
cardiovascular diseases. Exosomes-based mo-
lecular mechanisms are important for develop-
ing novel therapeutic approaches for cardio-
vascular events. In this review, we will (1) pro-
vide insights into the detrimental and beneficial 
effects of exosomes on cardiovascular physi-
ology, (2) summarize the underlying biological 
mechanisms of the exosome in cardiovascular 
events, (3) investigate the therapeutic value of 
exosomes for cardiovascular disorders.
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Introduction

The prevalence of cardiovascular diseases is 
markedly increased in low- and middle-income 
countries for decades1,2. Over 4.3 million deaths 
are induced by cardiovascular diseases every 
year in Europe, which brings a considerable bur-
den on the economy of European Union3. The 
Centers for Disease Control and Prevention have 
announced that $444 billion may be used for the 
treatment of cardiovascular diseases in 2010, and 
the costs will be enhanced with the increase of 
life expectancy4. Development of novel diagnos-
tic or therapeutic strategies may provide multiple 
opportunities for reduction in mortality of cardio-
vascular diseases. 

Exosomes have obtained substantially attention 
due to their potential therapeutic applications5. A 
wide range of researches has investigated the 

roles of exosomes in cancers6,7, neurologic dis-
order8, endocrine system diseases9, autoimmune 
diseases10 and cardiovascular diseases11. Exo-
somes are involved in various biological activities 
including cell proliferation and differentiation12, 
inflammation13, senescence14, angiogenesis15, 
stress response16 and cardiovascular remodeling17. 
Exosomes-mediated intercellular communication 
plays a fundamental role in vascular integrity and 
cardiovascular diseases18. 

Exosomes are associated with many  cardio-
vascular  pathologies such as cardiac hypertro-
phy19, atherogenesis20, heart failure21, hyperten-
sion22 and diabetic cardiomyopathy23. Mounting 
evidence has shown that exosomes may transfer 
non-coding RNA (ncRNA) including miRNA 
and lncRNA to recipient cells, thus leading to the 
changes in protein expressions and phenotypes of 
recipient cells24,25. Exosomes are recently used as 
disease biomarkers26, therapeutic targets27, agents 
for drug delivery28 and biomedical applications29. 
The following  review will summarize the inter-
cellular signaling, possible mechanisms, prog-
nostic, diagnostic and therapeutic roles of exo-
somes and exosomal ncRNAs in cardiovascular 
diseases. 

Biogenesis and Secretion of Exosome
Cell to cell communication between cardio-

vascular cells is a complex process that exerts a 
requisite role in cardiovascular biology30,31. Ac-
cumulating evidence establishes that exosomes 
are intercellular communication messengers32,33. 
The exosomes were firstly identified during the 
research on the formation of vesicle in 198734. 
Exosomes are known to be one of the subtypes of 
membrane vesicles, whose sizes are ranging from 
30 to 100 nm35. Exosomes are distinguished from 
apoptotic bodies and microvesicles due to their 
unique qualities36. 

It has been demonstrated that microvesicles 
are released from direct outward blebs of plas-
ma. However, exosomes are produced by en-
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dosomal network37. The inward budding of cell 
membrane ligands leads to the fusion of small 
vesicles and early endosomes. The extracellular 
membrane ligands are internalized to surfaces of 
these small vesicles during this process. The sec-
ond inward invagination of the endocytic vesicles 
membrane creates various intraluminal vesicles 
(late endosomes). The deposition of late endo-
somes is defined as multivesicular bodies. The 
multivesicular bodies are then fused into the cell 
membrane, following by release of intraluminal 
vesicles through an exocytotic way. The released 
intraluminal vesicles are referred to as exosomes. 
A wide coverage of cargos such as proteins, 
enzymes, ncRNA, mRNA, and molecules are 
presented within exosomes23,38. 

The constitutive or inducible pathways are 
responsible for the release of exosomes. In the 
literature, certain RAB GTPases39-41, WNT5A42, 
heterotrimeric G-protein43, glycosphingolipids 
and flotillins44 can modulate the constitutive se-
cretion of exosomes. Numerous factors includ-
ing calcium release-dependent mechanism45, heat 
shock46, hypoxia47, thrombin48, DNA damage49, 
lipopolysaccharide50,51 participate in the secretion 
of exosomes. 

Characterization of Exosomes 
Electron microscopy is a critical step in the 

characterization of exosomes. Transmission elec-
tron microscopy can clearly capture the photo-
graphs of exosomes with the aid of uranyl acetate 
and methylcellulose. Exosomes are observed as 
double-membrane bound vesicles under electron 
microscopy52. The “cup-shaped” morphology of 
exosomes can be distinguished on electron micro-
graph53. Furthermore, standard preparation tech-
niques are applied to identify exosomes on tissues 
using electron micrographs54. 

It is noted that exosomes are generated from 
endosomal pathways, antibodies against endo-
somal markers may be employed to characterize 
the exosomes. Tetraspanins (CD9, CD63, and 
CD81), and phosphatidylserine are abundantly 
expressed within exosomes55. Combinations of 
antibodies and electron micrograph methods are 
recommended to obtain accurate confirmation of 
exosomes. 

Flow cytometry is applied to examine fluo-
rophores-tagged exosomes, but it is unable to 
quantify the exosome numbers due to swarming 
effects56,57. The exosomes are marked by mem-
brane-binding dye such as PKH67, which can 
be seen under fluorescence and confocal micros-

copy. Such technics could determine whether 
marked exosomes are absorbed into recipient 
cells58. Moreover, small-angle X-ray scattering59, 
resistive pulse sensing60, and Raman microspec-
troscopy61 are novel methods for detection of 
exosomes. 

Cellular Communication Functions 
Cell junctions, adhesion contacts, and soluble 

factors are classical molecules, and they act on 
targeted cells in an endocrine manner62. Extracel-
lular vesicles transfer the various proteins, lipids, 
and nucleic acids into recipient cells, thus causing 
changes in intracellular signaling of recipient 
cells52. A growing body of evidence indicates 
that the proteins, mRNA, miRNA and lnc RNA 
within exosomes are inserted into recipient cells, 
thus inducing transient or persistent phenotypic 
changes in recipient cells63. It is interesting that 
the small RNAs in the exosomes are surrounded 
by lipids or lipoprotein complexes, which may 
protect them from degradation during the trans-
port processes64. The exosomes are involved in 
various physiological or pathological processes 
such as regulation of tumor growth, cytokine 
production or cardiovascular disorders9,65,66. 

Biomarkers, Diagnosis, and Therapy of 
Exosomes 

With the deepening of research on exosomes, 
the exosomes may be served as valuable biomark-
ers, diagnostic, prognostic and therapeutic tools 
for cardiovascular diseases67,68. MiR-133a-con-
taining exosomes are a useful biomarker for myo-
cardial damage or cardiomyocyte death69. It is 
revealed that the levels of miR-15b, miR-34a, and 
miR-636 within urinary exosomes are enhanced 
in patients with type 2 diabetic kidney  disease, 
and these urinary exosomal miRs are treated as 
a novel diagnostic panel for diabetic kidney dis-
ease70. Bioinformatics analysis establishes that 
urinary exosomal miR-133b, miR-342 and miR-
30a are closely associated with systolic-diastolic 
blood pressure, serum creatinine, urinary albu-
min creatinine ratio and glomerular filtration rate 
in diabetic nephropathy71. 

The biomolecules and bioactive molecules 
such as proteins, enzymes, growth factors, mR-
NA, DNA, and ncRNAs in exosomes facilitate 
the exosomes to be a therapeutic tool in many 
diseases72. In addition, exosomes are chemically 
modified to be a delivery tool for transferring 
the specific bioactive molecules into certain cell 
types73. The exosomes-carrying tumor antigens 
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induce T-cell lymphocyte responses and inhibit 
tumor growth74. The potential roles of exosomes 
in cardiovascular diseases are intensively inves-
tigated in recent years. The exosomes  derived 
from dendritic cells stimulate CD4(+) T lym-
phocytes activation to improve cardiac function 
after myocardial infarction in mice75. The car-
diomyocyte-released exosomes transfer glucose 
transport to endothelial cells, thus inducing glu-
cose uptake, glycolytic activity, and pyruvate 
production in endothelium76. Mesenchymal stem 
cells (MSCs) overexpressing GATA-4 releases 
exosomes containing a reservoir of anti-apoptot-
ic microRNAs to rat neonatal cardiomyocytes, 
contributing to cardiomyocytes survival  under 
hypoxic environment77.

To date, the possible roles of exosomes in 
cardiovascular diseases have not yet been fully 
elucidated in the clinical practice. More and more 
studies should be conducted to examine diag-
nostic, prognostic value and functional roles of 
exosomes content in cardiovascular diseases. 

Exosomes and Diabetes Mellitus 
Diabetes mellitus is a widely prevalent dis-

order around the world78,79. The exosomes are 
closely associated with diabetes in diabetic pa-
tients or diabetes models80-88. Plasma  exoso-
mal  miR-326 levels are up-regulated, but  let-7a 
and let-7f levels are down-regulated in diabetic 
patients, the levels of let-7a and let-7f in plasma 
exosomes are significantly increased after anti-
diabetic treatment81. The cardiomyocyte-derived 
exosomes from diabetic rats inhibit the prolif-
eration and migration of endothelial cells, but 
the exosomes from normal rats accelerate the 
proliferation and migration of endothelial cells88. 
It has been recently reported that the cardiomy-
ocytes-derived exosomes contribute to increas-
es in glucose uptake, glycolysis in endothelial 
cells under glucose deprivation conditions76. The 
cardiomyocytes transfer the exosomal miR-320 
into endothelial cells to mediate angiogenesis 
in type 2 diabetic rats83. The exosomes from 
bone marrow-derived mesenchymal stem cells 
are transferred into damaged neurons and astro-
cytes, which significantly improved cognitive im-
pairment in diabetic mice89. A large prospective 
study has concluded that exosomes containing 
miR-126 have a predictive value for cardiovascu-
lar events in patients with stable coronary artery 
disease90. The endothelial cells-derived exosomes 
promote vascular  endothelial  repair via trans-
ferring the miR-126 into recipient cells, which 

is disrupted under hyperglycemic conditions91. 
The miRNA-enriched exosomes from fibrocytes 
accelerate wound healing in diabetic mice92. The 
exosomes are ideal candidates for illumination of 
diabetic pathophysiology, and may provide novel 
therapeutic approaches for diabetes. 

Exosomes and Myocardial Infarction
Myocardial infarction is reflected by occlusion 

of coronary vessels and cardiac cell death93,94. 
The molecule mechanisms for cardiac rehabilitate 
response to myocardial infarction are not fully 
explained95. Coronary bypass surgery and balloon 
dilatation of coronary vessels are usually used to 
alleviate cardiac impairment in the acute phase of 
myocardial infarction96. Novel strategies or tech-
nics are urgent to be developed for improvement 
of cardiac tissue repair. The exosomes are criti-
cally involved in the proliferation and apoptosis 
of targeted cells97. A plethora of researches has 
identified the roles of exosomes in cardiovascular 
diseases98-100. The exosomes are essential for local 
and distant microcommunication with recipient 
cells in myocardial infarction12,101. The cardiac 
progenitor cells102 or embryonic stem cells-re-
leases exosomes103 regulate cardiac regeneration 
and cardiac remodeling during the myocardial 
infarction. 

Mesenchymal stem cells are able to deliver 
miR-22-shutting exosomes into neonatal rat ven-
tricle cardiomyocytes, leading to reduced apopto-
sis of cardiomyocytes104. Cardiac progenitor cells 
contribute to decreased cardiac fibrosis, cardio-
myocyte apoptosis, and increased angiogenesis 
or cardiac output after myocardial infarction via 
transferring antifibrotic miRNAs-enriched exo-
somes to fibroblasts under hypoxia32,102. The car-
diosphere-released exosomes stimulate the pro-
liferation and angiogenesis of cardiomyocytes105. 
The mesenchymal stem cell-derived exosomes 
preserve cardiac function, and relieve infarct 
size in ischemia reperfusion injury mode106. In-
travenous administration of mesenchymal stem 
cells-derived exosomes decreases the infarct size 
by 45% and depresses systemic inflammation 
in ischemia-reperfusion model107. The exosomes 
from healthy controls exert a protective role in 
ischemic myocardium via delivering endogenous 
protective signals including cardio-protective 
heat shock protein 70108. Direct intramyocardi-
al transplantation of  exosomes from GATA-4 
overexpressed mesenchymal stem cells obviously 
improve cardiac contractile function and alleviate 
infarct size in the rat heart77. These studies sug-
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gest that exosomes from stem cells are believed to 
play protective roles in cardiac remodeling during 
the myocardial infarction. 

Exosomes and Coronary Artery Disease
Atherosclerotic lesions are closely associated 

with endothelial cell activation, inflammation, 
formation of foam cells and phenotype trans-
formation of VSMCs109,110. In primary rat aortic 
endothelial cells, the heat shock protein-70-car-
rying exosomes are increased in response to 
homocysteine and ox-LDL stimulation111. Heat 
shock protein-70 mediated proinflammatory 
genes contribute to monocyte adhesion in en-
dothelial cells112. The heat shock protein-70-en-
riching exosomes may be responsible for sub-
endothelial migration of monocytes in athero-
sclerosis. The activated macrophages secrete 
miR-223-containg exosomes to evoke an in-
flammatory response in atherosclerosis113. It has 
been shown that exosomes from atherosclerotic 
plaques are a stimulator for the adhesion mol-
ecule expressions, and inflammatory endothe-
lial cells, which may be responsible for the 
plaque development114. The exosomes containing 
miR-143/145 are increased in human umbil-
ical vein endothelial cells exposure to shear 
stress through modulation of shear-responsive 
transcription factor KLF2115-117. Cardiomyo-
cytes and endothelial cells can communicate 
via exosomes-mediated exchanges118,119. Endo-
thelial cells release miR-146a-bearing exosomes 
to cardiomyocytes, which downregulates the 
interleukin-1 receptor-associated kinase 1 and 
receptor tyrosine-protein kinase ERBB4 levels 
in cardiomyocytes118,120. 

Activated platelets-derived exosomes car-
ry CD40 ligand to regulate the differentiation 
of antigen-presenting cells including mono-
cyte-derived dendritic cells121. However, stored 
platelets-associated exosomes retard the differ-
entiation from monocytes to macrophage and 
dendritic cell maturation122. It is seen that plate-
let-released exosomes may exert different ef-
fects on inflammation response. Also, the plate-
let-derived exosomes may participate in ath-
erogenesis via hyperplasia of vascular smooth 
muscle cells123 and proinflammatory activation 
of endothelial cells124. The monocytes-generat-
ed exosomes promote atherogenesis associated 
with activation of macrophages and endotheli-
al cells125. The monocytes-derived exosomes are 
suggested to stimulate nitrosative stress in human 
endothelial cells126. 

Conclusions

In recent years, the exosomes are novel ap-
proaches or strategies for characterizing the 
communications between living cells. The func-
tional roles of exosomes in cardiovascular disor-
ders are summarized in Figure 1. The exosomes 
are taken as possible candidates for intercellular 
and tissue-level communication. Importantly, 
the exosomes-containing various proteins and 
RNA messages may be secreted to recipient 
cells, which modulates the targeted gene ex-
pressions in recipient cells. Furthermore, the 
epigenetic mechanisms such as histone mod-
ifications, DNA methylation, and non-coding 
RNA expressions play pivotal roles in various 
biological effects in cardiovascular diseases. It 
may be speculated that exosomes may carry epi-
genetic modulator to induce functional changes 
in recipient cells. It is interesting that exosomes 
from different cells may exhibit protective or 
destructive roles in cardiovascular diseases. The 
advanced technics to modify or load thera-

Figure 1. Functional roles of exosomes in cardiovascular 
disorders.
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peutics into exosomes can be developed and 
standardized in a future study. It is undeniable 
that the unique opportunities and new challeng-
es for characterization of exosomes as clinical 
biomarkers, diagnosis and prognosis factors in 
cardiovascular diseases are still on fire.
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